
You Only Look One-level Feature

Qiang Chen1,2*, Yingming Wang4, Tong Yang4, Xiangyu Zhang4, Jian Cheng1,2,3†, Jian Sun4

1NLPR, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3CAS Center for Excellence in Brain Science and Intelligence Technology
4MEGVII Technology

{qiang.chen, jcheng}@nlpr.ia.ac.cn, {wangyingming, yangtong, zhangxiangyu, sunjian}@megvii.com

Abstract

This paper revisits feature pyramids networks (FPN) for
one-stage detectors and points out that the success of FPN
is due to its divide-and-conquer solution to the optimiza-
tion problem in object detection rather than multi-scale fea-
ture fusion. From the perspective of optimization, we in-
troduce an alternative way to address the problem instead
of adopting the complex feature pyramids - utilizing only
one-level feature for detection. Based on the simple and
efficient solution, we present You Only Look One-level Fea-
ture (YOLOF). In our method, two key components, Dilated
Encoder and Uniform Matching, are proposed and bring
considerable improvements. Extensive experiments on the
COCO benchmark prove the effectiveness of the proposed
model. Our YOLOF achieves comparable results with its
feature pyramids counterpart RetinaNet while being 2.5×
faster. Without transformer layers, YOLOF can match the
performance of DETR in a single-level feature manner with
7× less training epochs. With an image size of 608 × 608,
YOLOF achieves 44.3 mAP running at 60 fps on 2080Ti,
which is 13% faster than YOLOv4. Code is available at
https://github.com/megvii-model/YOLOF.

1. Introduction

In state-of-the-art two-stage detectors [22, 13, 3] and
one-stage detectors [23, 38], feature pyramids become an
essential component. The most popular way to build fea-
ture pyramids is the feature pyramid networks (FPN) [22],
which mainly brings two benefits: (1) multi-scale feature
fusion: fusing multiple low-resolution and high-resolution
feature inputs to obtain better representations; (2) divide-
and-conquer: detecting objects on different levels regarding

*This work is done during Qiang Chen’s internship at MEGVII Tech-
nology.

†Corresponding author.

MiMo
35.9 mAP

C3

C4

C5

P3
P4
P5
P6
P7

(a) Multiple-in-Multiple-out

SiMo
35.0 mAP

C3

C4

C5

P3
P4
P5
P6
P7

(b) Single-in-Multiple-out

MiSo
23.9 mAP

C3

C4

C5

P3
P4
P5
P6
P7

(c) Multiple-in-Single-out

SiSo
23.7 mAP

C3

C4

C5

P3
P4
P5
P6
P7

(d) Single-in-Single-out

Figure 1. Comparison of box AP among the Multiple-in-Multiple-
out (MiMo), Single-in-Multiple-out (SiMo), Multiple-in-Single-
out (MiSo), and Single-in-Single-out (SiSo) encoders on COCO
validation set. Here, we adopt the original RetinaNet [23] as our
baseline model, where C3, C4, and C5 denote output features of
the backbone with a downsample rate of {8, 16, 32} and P3 to P7
represent the feature levels used for final detection. All results re-
ported in the figure use the same backbone, ResNet-50 [14]. The
structure of MiMo is same as the FPN in RetinaNet [23]. A de-
tailed illustration of the structure for all encoders can be found in
the Figure 8.

objects’ scales. A common belief for FPN is that its success
relies on the fusion of multiple level features, inducing a
line of studies of designing complex fusion methods manu-
ally [25, 17, 28], or via Neural Architecture Search (NAS)
algorithms [9, 37]. However, the belief ignores the function
of the divide-and-conquer in FPN. It leads to fewer studies
on how these two benefits contribute to FPN’s success and
may hinder new advances.

This paper studies the influence of FPN’s two bene-
fits in one-stage detectors. We design experiments by de-
coupling the multi-scale feature fusion and the divide-and-
conquer functionalities with RetinaNet [23]. In detail, we
consider FPN as a Multiple-in-Multiple-out (MiMo) en-
coder, which encodes multi-scale features from the back-
bone and provides feature representations for the decoder
(the detection heads). We conduct controlled compar-
isons among Multiple-in-Multiple-out (MiMo), Single-in-

1

ar
X

iv
:2

10
3.

09
46

0v
1 

 [
cs

.C
V

] 
 1

7 
M

ar
 2

02
1

https://github.com/megvii-model/YOLOF


Multiple-out (SiMo), Multiple-in-Single-out (MiSo), and
Single-in-Single-out (SiSo) encoders in Figure 1. Surpris-
ingly, the SiMo encoder, which only has one input feature
C5 and does not perform feature fusion, can achieve com-
parable performance with the MiMo encoder (i.e., FPN).
The performance gap is less than 1 mAP. In contrast, the
performance drops dramatically (≥ 12 mAP) in MiSo and
SiSo encoders. These phenomenons suggest two facts: (1)
the C5 feature carries sufficient context for detecting ob-
jects on various scales, which enables the SiMo encoder
to achieve comparable results; (2) the multi-scale feature
fusion benefit is far away less critical than the divide-and-
conquer benefit, thus multi-scale feature fusion might not
be the most significant benefit of FPN, which is also demon-
strated by ExFuse [50] in semantic segmentation. Thinking
one step deeper, divide-and-conquer is related to the opti-
mization problem in object detection. It divides the com-
plex detection problem into several sub-problems by object
scales, facilitating the optimization process.

The above analysis suggests that the essential factor for
the success of FPN is its solution to the optimization prob-
lem in object detection. The divide-and-conquer solution
is a good way. But it brings memory burdens, slows down
the detectors, and make detectors’ structure complex in one-
stage detectors like RetinaNet [23]. Given that the C5 fea-
ture carries sufficient context for detection, we show a sim-
ple way to address the optimization problem.

We propose You Only Look One-level Feature (YOLOF),
which only uses one single C5 feature (with a downsample
rate of 32) for detection. To bridge the performance gap
between the SiSo encoder and the MiMo encoder, we first
design the structure of the encoder properly to extract the
multi-scale contexts for objects on various scales, compen-
sating for the lack of multiple-level features; then, we ap-
ply a uniform matching mechanism to solve the imbalance
problem of positive anchors raised by the sparse anchors in
the single feature.

Without bells and whistles, YOLOF achieves compa-
rable results with its feature pyramids counterpart Reti-
naNet [23] but 2.5× faster. In a single feature manner,
YOLOF matches the performance of the recent proposed
DETR [4] while converging much faster (7×). With an im-
age size of 608× 608 and other techniques [1, 47], YOLOF
achieve 44.3 mAP running at 60 fps on 2080Ti, which is
13% faster than YOLOv4 [1]. In a nutshell, the contribu-
tions of this paper are:

• We show that the most significant benefits of FPN is its
divide-and-conquer solution to the optimization prob-
lem in dense object detection rather than the multi-
scale feature fusion.

• We present YOLOF, which is a simple and efficient
baseline without using FPN. In YOLOF, we propose

two key components, Dilated Encoder and Uniform
Matching, bridging the performance gap between the
SiSo encoder and the MiMo encoder.

• Extensive experiments on COCO benchmark indicates
the importance of each component. Moreover, we con-
duct comparisons with RetinaNet [23], DETR [4] and
YOLOv4 [1]. We can achieve comparable results with
a faster speed on GPUs.

2. Related Works
Multiple-level feature detectors. It is a conventional tech-
nique to employ multiple features for object detection. Typ-
ical approaches to construct multiple features can be cate-
gorized into image pyramid methods and feature pyramid
methods. Image pyramids based detector such as DPM [8]
dominates the detection in the pre-deep learning era. In
CNN-based detectors, the image pyramids method also
wins some researchers’ [34, 35] praise as it can achieve
higher performance out of the box. However, the image
pyramids method is not the only way to obtain multiple
features; it is more efficient and natural to exploit feature
pyramids’ power in CNN models. SSD [26] first utilizes
multiple-scale features and performs object detection on
each scale for different scales objects. FPN [22] follows
SSD [26] and UNet [33] and constructs semantic-riched
feature pyramids by combining shallow features and deep
features. After that, several works [17, 25, 9, 37] follow
FPN and focus on how to obtain better representations. FPN
becomes an essential component and dominates modern de-
tectors. It is also applied to popular one-stage detectors,
such as RetinaNet [23], FCOS [38], and their variants [48].
Another line of method to get feature pyramids is to use
multi-branch and dilation convolution [20]. Different from
the above works, our method is a single-level feature detec-
tor.

Single-level feature detectors. In early times, the R-CNN
series [11, 10, 31] and R-FCN [6] only extract RoI fea-
tures on a single feature, while their performances lag be-
hind their multiple feature counterparts [22]. Also, in one-
stage detectors, YOLO [29] and YOLOv2 [30] only use
the last output feature of the backbone. They can be su-
per fast but have to bear a performance decline in detection.
CornerNet [19] and CenterNet [51, 7] follow this fashion
and achieve competitive results while using a single feature
with a downsample rate of 4 to detect all the objects. Us-
ing a high-resolution feature map for detection brings enor-
mous memory cost and is not friendly to deployment. Re-
cently, DETR [4] introduces the transformer [39] to detec-
tion and shows that it could achieve state-of-the-art results
only use a single C5 feature. Due to the totally anchor-free
mechanism and transformer learning phase, DETR needs a

2



Backbone Encoder Decoder
cat

bench

Figure 2. An illustration of the detection pipeline. In this paper, we format the detection pipeline into three parts: (1) the backbone;
(2) the encoder, which receives inputs from the backbone and distributes representations for detection; (3) the decoder, which performs
classification and regression tasks and generate final prediction boxes. The color for the encoder is corresponding to the one in Figure 1.

long training schedule for its convergence. The long train-
ing schedule characteristic is cumbersome for further im-
provements. Unlike these papers, we investigate the work-
ing mechanism of multiple-level detection. From the per-
spective of optimization, we provide an alternative solu-
tion to the widely used FPN. Moreover, YOLOF converges
faster and achieves promising performance; thus, YOLOF
can serve as a simple baseline for fast and accurate detec-
tors.

3. Cost Analysis of MiMo Encoders
As mentioned in Section 1, the success of FPN in dense

object detection is due to its solution to the optimization
problem. However, the multi-level feature paradigm is in-
evitable to make detectors complex, brings memory bur-
dens, and slows down the detector. In this section, we pro-
vide a quantitative study on the cost of MiMo encoders.

We design experiments based on RetinaNet [23] with
ResNet-50 [14]. In detail, we format the pipeline for the
detection task as a combination of three key parts: the
backbone, the encoder, and the decoder (Figure 2). In
this view, we show the FLOPs of each component in Fig-
ure 3. Compared with SiSo encoders, the MiMo encoder
brings enormous memory burdens to the encoder and the
decoder(134G vs. 6G) (Figure 3). Moreover, the detector
with MiMo encoder runs much slower than the ones with
SiSo encoders (13 FPS vs. 34 FPS) (Figure 3). The slow
speed is caused by detecting objects on high-resolution fea-
ture maps in the detector with MiMo encoder, such as the
C3 feature (with a downsample rate of 8). Given the above
drawbacks of the MiMo encoder, we aim to find an alterna-
tive way to solve the optimization problem while keeping
the detector simple, accurate, and fast simultaneously.

4. Method
Motivated by the above purpose and the finding that the

C5 feature contains enough context for detecting numerous
objects, we try to replace the complex MiMo encoder with
the simple SiSo encoder in this section. But this replace-
ment is nontrivial as the performance drops extensively
when applying SiSo encoders according to the results in
Figure 3. Given the situation, we carefully analyze the ob-
stacles preventing SiSo encoders from getting a comparable

FP
S

0

20

40

60

80

100

120

140

10

15

20

25

30

35

40

45

RetinaNet
MiMo(C=256)

35.9mAP

RetinaNet
SiSo(C=256)

23.7mAP

RetinaNet
SiSo(C=512)

24.6mAP

YOLOF
SiSo(C=512)

37.7mAP

Backbone Encoder Decoder Speed

G
FL

O
Ps

Figure 3. FLOPs, accuracy, and speed comparison between the
models that adopt MiMo and SiSo encoders on COCO. As the
FLOPs of the decoder is affected by the encoder’s outputs, we
stack the FLOPs of the encoder and the decoder in the figure to
better understanding the effects of encoders on the FLOPs. All
models use the same backbone, ResNet-50. All FLOPs are mea-
sured with a shorter edge size 800 over the first 100 images of
COCO val2017. The FPS is calculated with batch size 1 on 2080Ti
from the total inference pure compute time reported in the Detec-
tron2 [42]. In the figure, C represents the number of channels used
in the model’s encoder and decoder.

performance with MiMo encoders. We find that two prob-
lems brought by SiSo encoders are responsible for the per-
formance drop. The first problem is that the range of scales
matching to the C5 feature’s receptive field is limited, which
impedes the detection performance for objects across vari-
ous scales. The second one is the imbalance problem on
positive anchors raised by sparse anchors in the single-level
feature. Next, we discuss these two problems in detail and
provide our solutions.

4.1. Limited Scale Range

Recognizing objects at vastly different scales is a fun-
damental challenge in object detection. One feasible so-
lution to this challenge is to leverage multiple-level fea-
tures. In detectors with MiMo or SiMo encoders, they con-
struct multiple-level features with different receptive fields
(P3-P7) and detect objects on the level with receptive field
matching to their scales. However, the single-level feature
setting changes the game. There is only one output feature
in SiSo encoders, whose receptive field is a constant. As

3



scales

scales

scales

scales of objects scale range covered by feature

(a)

(b)

(c)

Figure 4. A toy example to illustrate the relation between the ob-
ject scales and the scale range covered by the single feature. The
axis in this figure denotes the scales. (a) indicates that the feature’s
receptive field can only cover a limited scale range; (b) shows that
the enlarged scale ranges enable the feature to cover large objects
while miss covering small ones; (c) represents that all scales can
be covered the feature with multiple receptive fields.

shown in Figure 4(a), the C5 feature’s receptive field can
only cover a limited scale range, resulting in poor perfor-
mance if the objects’ scales mismatches with the receptive
field. To achieve the goal of detecting all objects with SiSo
encoders, we have to find a way to generate an output fea-
ture with various receptive fields, compensating for the lack
of multiple-level features.

We begin with enlarging the receptive field of the C5
feature by stacking standard and dilated convolutions [45].
Although the covered scale range is enlarged to some ex-
tent, it still can not cover all object scales as the enlarging
process multiplies a factor greater than 1 to all originally
covered scales. We illustrate the situation in Figure 4(b),
where the whole scale range shifts to larger scales compare
with the one in Figure 4(a). Then, we combine the original
scale range and the enlarged scale range by adding the cor-
responding features, resulting in an output feature with mul-
tiple receptive fields covering all object scales (Figure 4(c)).
The above operations can be easily achieved by construct-
ing residual blocks [14] with dilations on the middle 3 × 3
convolution layer.

Dilated Encoder: Based on the above designs, we pro-
pose our SiSo encoder in Figure 5, named as Dilated En-
coder. It contains two main components: the Projector and
the Residual Blocks. The projection layer first applies one
1 × 1 convolution layer to reduce the channel dimension,
then add one 3×3 convolution layer to refine semantic con-
texts, which is the same as in the FPN [22]. After that, we
stack four successive dilated residual blocks with different
dilation rates in the 3 × 3 convolution layers to generate
output features with multiple receptive fields, covering all
objects’ scales.

Discussion: Dilated convolution [45] is a common strategy
to enlarge the features’ receptive field in object detection.
As reviewed in the Section 2, TridentNet [20] use dilated
convolution to generate multi-scale features. It deals with

1×
1

3×
3

1×
1

3×
3

1×
1

×4

C5 P5

Projector Residual Blocks

Figure 5. An illustration of the structure of Dilated Encoder. In the
figure, 1× 1 and 3× 3 denotes 1× 1 and 3× 3 convolution layers
and ×4 means four successive residual blocks. All convolution
layers in Residual Blocks are followed by a batchnorm layer [15]
and a ReLU layer [27], while in Projector, we only use convolution
layers and batchnorm layers [15].

the scale variation problem in object detection via multi-
branch structure and weight sharing mechanism, which is
different from our single-level feature setting. Moreover,
Dilated Encoder stack dilated residual blocks one by one
without weight sharing. Although DetNet [21] also succes-
sively applies dilated residual blocks, its purpose is to main-
tain the spatial resolution of the features and keep more de-
tails in the backbone’s outputs, while ours is to generate a
feature with multiple receptive fields out of the backbone.
The design of Dilated Encoder enables us to detecting all
objects on single-level feature instead of on multiple-level
features like TridentNet [20] and DetNet [21].

4.2. Imbalance Problem on Positive Anchors

The definition of positive anchors is crucial for the opti-
mization problem in object detection. In anchor-based de-
tectors, strategies to define positive are dominated by mea-
suring the IoUs between anchors and ground-truth boxes. In
RetinaNet [23], if the max IoU of the anchor and ground-
truth boxes is greater than a threshold 0.5, this anchor will
be set as positive. We call it Max-IoU matching.

In MiMo encoders, the anchors are pre-defined on multi-
ple levels in a dense paved fashion, and the ground-truth
boxes generate positive anchors in feature levels corre-
sponding to their scales. Given the divide-and-conquer
mechanism, Max-IoU matching enables ground-truth boxes
in each scale to generate a sufficient number of positive an-
chors. However, when we adopt the SiSo encoder, the num-
ber of anchors diminish extensively compare to the one in
the MiMo encoder, from 100k to 5k, resulting in sparse an-
chors1. Sparse anchors raise a matching problem for detec-
tors when applying Max-IoU matching, as shown in Fig-
ure 6. Large ground-truth boxes induce more positive an-
chors than small ground-truth boxes in natural, which cause
an imbalance problem for positive anchors. This imbalance
makes detectors pay attention to large ground-truth boxes
while ignoring the small ones when training.

1In SiSo encoders, we simply collapse multiple anchors on multiple-
level features to single-level, e.g., we construct 5 anchors with different
anchor sizes of {32, 64, 128, 256, 512} on each position of the C5 feature.

4



0 5 10 15 20

Max-IoU

ATSS

Top1

Ours small medium large

Figure 6. Distribution of the generated positive anchors in vari-
ous matching methods with single feature. This figure aims to
show the balancedness of the generated positive anchors. The pos-
itive anchors in the Max-IoU are dominated by large ground-truth
boxes, causing huge imbalance across object scales. ATSS alle-
viates the imbalance problem by adaptively sampling positive an-
chors when training. The Top1 and Ours adopt a uniform match-
ing, generating positive anchors in a balanced manner regardless
of small, medium, and large objects.

Uniform Matching: To solve this imbalance problem in
positive anchors, we propose an Uniform Matching strat-
egy: adopting the k nearest anchor as positive anchors for
each ground-truth box, which makes sure that all ground-
truth boxes can be matched with the same number of posi-
tive anchors uniformly regardless of their sizes (Figure 6).
Balance in positive samples makes sure that all ground-truth
boxes participate in training and contribute equally. Be-
sides, following Max-IoU matching [23], we set IoU thresh-
olds in Uniform Matching to ignore large IoU (>0.7) nega-
tive anchors and small IoU (<0.15) positive anchors.

Discussion: relation to other matching methods. Apply-
ing topk in the matching process is not new. ATSS [48] first
select topk anchors for each ground-truth box on L feature
levels, then samples positive anchors among k × L candi-
dates by dynamic IoU thresholds. However, ATSS focuses
on defining positives and negatives adaptively, while our
uniform matching focuses on achieving balance on posi-
tive samples with sparse anchors. Although several pre-
vious methods achieve balance on positive samples, their
matching processes are not designed for this imbalance
problem. For example, YOLO [29] and YOLOv2 [30]
match the ground-truth boxes with the best matching cell or
anchor; DETR [4] and [36] apply Hungarian algorithm [18]
for matching. These matching methods can be view as top1
matching, which is a specific case of our uniform match-
ing. More importantly, the difference between the uniform
matching and the learning-to-match methods is that: the
learning-to-match methods, such as FreeAnchor [49] and
PAA [16], adaptively separate anchors into positives and
negatives according to the learning status, while uniform
matching is fixed and does not evolve with training. The
uniform matching is proposed to address the specific imbal-
ance problem on positive anchors under the SiSo design.
The comparison in Figure 6 and the results in Table 5e
demonstrate the significance of the balance in positives in

SiSo encoders.

4.3. YOLOF

Based on the solutions above, we propose a fast and
straightforward framework with single-level feature, de-
noted as YOLOF. We format YOLOF into three parts: the
backbone, the encoder, and the decoder. The sketch of
YOLOF is shown in Figure 9. In this section, we give a
brief introduction to the main components of YOLOF.

Backbone. In all models, we simply adopt the ResNet [14]
and ResNeXt [43] series as our backbone. All models are
pre-trained on ImageNet. The output of the backbone is
the C5 feature map which has 2048 channels and with a
downsample rate of 32. To make a fair comparison with
other detectors, all batchnorm layers in the backbone are
frozen by default.

Encoder. For the encoder (Figure 5), we first follow FPN
by adding two projection layers (one 1 × 1 and one 3 × 3
convolution) after the backbone, resulting in a feature map
with 512 channels. Then, to enable the encoder’s output
feature to cover all objects on various scales, we propose
to add residual blocks, which consist of three consecutive
convolutions: the first 1 × 1 convolution apply channel re-
duction with a reduction rate of 4, then a 3× 3 convolution
with dilation is used to enlarge the receptive field, at last, a
1× 1 convolution to recover the number of channels.

Decoder. For the decoder, we adopt the main design of
RetinaNet, which consists of two parallel task-specific
heads: the classification head and the regression head (Fig-
ure 9). We only add two minor modifications. The first
one is that we follow the design of FFN in DETR [4] and
make the number of convolution layers in two heads differ-
ent. There are four convolutions followed by batch normal-
ization layers and ReLU layers on the regression head while
only have two on the classification head. The second is that
we follow Autoassign [52] and add an implicit objectness
prediction (without direct supervision) for each anchor on
the regression head. The final classification scores for all
predictions are generated by multiplying the classification
output with the corresponding implicit objectness.

Other Details. As mentioned in the previous section, the
pre-defined anchors in YOLOF are sparse, decreasing the
match quality between anchors and ground-truth boxes. We
add a random shift operation on the image to circumvent
this problem. The operation shifts the image randomly with
a maximum of 32 pixels in left, right, top, and bottom direc-
tions and aims to inject noises into the object’s position in
the image, increasing the probability of ground-truth boxes
matching with high-quality anchors. Moreover, we found
that a restriction on the anchors’ center’s shift is also helpful
to the final classification when using a single-level feature.

5



Model schedule AP AP50 AP75 APS APM APL #params GFLOPs FPS

RetinaNet [23] 1x 35.9 55.7 38.5 19.4 39.5 48.2 38M 201 13

RetinaNet-R101 [23] 1x 38.3 58.5 41.3 21.7 42.5 51.2 57M 266 11

RetinaNet+ 1x 37.7 58.1 40.2 22.2 41.7 49.9 38M 201 13

RetinaNet-R101+ 1x 40.0 60.4 42.7 23.2 44.1 53.3 57M 266 10

YOLOF 1x 37.7 56.9 40.6 19.1 42.5 53.2 44M 86 32

YOLOF-R101 1x 39.8 59.4 42.9 20.5 44.5 54.9 63M 151 21

YOLOF-X101 1x 42.2 62.1 45.7 23.2 47.0 57.7 102M 289 10

YOLOF-X101† 3x 44.7 64.1 48.6 25.1 49.2 60.9 102M 289 10

YOLOF-X101†‡ 3x 47.1 66.4 51.2 31.8 50.9 60.6 102M - -

Table 1. Comparison with RetinaNet on the COCO2017 validation set. The top section shows the results of RetinaNet. The middle section
gives the results of an improved RetinaNet (with a ”+”), which is RetinaNet with GIoU [32], GN [41], and implicit objectness. The last
section shows the results of various YOLOF models. In the table, the model with a suffix of R101 or X101 means it use ResNet-101 [14]
or RetNeXt-101-64×4d [43] as backbone. For those not marked with suffix, they adopt ResNet-50 [14] by default. In the last two rows,
we use multi-scale training and testing techniques († indicates multi-scale training and ‡ means multi-scale testing), whose settings follow
HTC [5]. More details about the settings can be found in the Appendix. In the last three columns, we show models’ number of parameters
(#params), GFLOPs, and inference speed. All FLOPs are measured with a shorter edge size 800 over the first 100 images of COCO
val2017. Moreover, the FPS in the table is calculated with batch size 1 on 2080Ti from the total inference pure compute time reported in
the Detectron2 [42].

We add a restriction that the centers’ shift for all anchors
should smaller than 32 pixels.

5. Experiments
We evaluate our YOLOF on the MS COCO [24] bench-

mark and conduct comparisons with RetinaNet [23] and
DETR [4]. Then, we provide a detailed ablation study
of each component’s design with quantitative results and
analysis. Finally, to give insights to further research on
single-level detection, we provide error analysis and show
the weaknesses of YOLOF compared with DETR [4]. The
details are as follows.

Implementation Details. YOLOF is trained with synchro-
nized SGD over 8 GPUs with a total of 64 images per mini-
batch (8 images per GPU). All models are trained with an
initial learning rate of 0.12. Moreover, following DETR [4],
we set a smaller learning rate for the backbone, which is
1/3 of the base learning rate. To stabilize the training at
the beginning, we extend the number of warmup iterations
from 500 to 1500. For training schedules, as we increase
the batch size, the ’1×’ schedule setting in YOLOF is a to-
tal of 22.5k iterations and with base learning rate decreased
by 10 in the 15k and the 20k iteration. Other schedules are
adjusted according to the principles in Detectron2 [42]. For
model inference, we employ NMS with a threshold of 0.6
to post-process the results. For other hyperparameters, we
follow the settings of RetinaNet [23].

5.1. Comparison with previous works

Comparison with RetinaNet: To make a fair comparison,
we align RetinaNet with YOLOF by employing generalized

IoU [32] for the box loss, adding an implicit objectness
prediction, and applying group normalization layers [41]
in heads (as there are only two images per GPU and both
BN [15] and SyncBN [46] give poor results in RetinaNet 2,
we use GN [41] instead of BN [15] in the heads). The re-
sults are presented in Table 1. All ’1×’ models are trained
with a single scale that the shorter side is set as 800 pixels
and the longer side is at most 1333 [23]. In the top sec-
tion, we give RetinaNet baseline results trained with De-
tectron2 [42]. In the middle section, we present the results
of the improved RetinaNet baseline (with a ”+”), whose
settings are aligned with YOLOF. In the last section, we
show results from multiple YOLOF models. Thanks to
the single-level feature, YOLOF achieves results on par
with RetinaNet+ with a 57% flops reduction (flops for
each component in YOLOF are shown in Figure 3) and
a 2.5× speed up. Due to the large stride (32) of the C5
feature, YOLOF has an inferior performance (−3.1) than
RetinaNet+ on small objects. However, YOLOF achieves
better performance on large objects (+3.3) as we add di-
lated residual blocks in the encoder. The comparison be-
tween RetinaNet+ and YOLOF with a ResNet-101 [14]
show similar evidence as well. Although YOLOF is inferior
to RetinaNet+ on small objects when applying the same
backbone, it can match small objects’ performance with a
stronger backbone ResNeXt [43] while running at the same
speed. Moreover, to prove that our method is compatible
and complementary to current technologies in object detec-

2https : / / github . com / facebookresearch /
detectron2/blob/master/detectron2/modeling/meta_
arch/retinanet.py#L532

6

https://github.com/facebookresearch/detectron2/blob/master/detectron2/modeling/meta_arch/retinanet.py#L532
https://github.com/facebookresearch/detectron2/blob/master/detectron2/modeling/meta_arch/retinanet.py#L532
https://github.com/facebookresearch/detectron2/blob/master/detectron2/modeling/meta_arch/retinanet.py#L532


Model Epochs #params GFLOPS/FPS AP AP50 AP75 APS APM APL

DETR [4] 500 41M 86/24∗ 42.0 62.4 44.2 20.5 45.8 61.1

DETR-R101 [4] 500 60M 152/17∗ 43.5 63.8 46.4 21.9 48.0 61.8

YOLOF 72 44M 86/32 41.6 60.5 45.0 22.4 46.2 57.6

YOLOF-R101 72 63M 151/21 43.7 62.7 47.4 24.3 48.3 58.9

Table 2. Comparison with DETR on the COCO2017 validation set. We conduct comparisons with backbone ResNet-50 (without suffix)
and ResNet-101 (with a suffix R101). To make fair comparison, YOLOF adopts multi-scale training (same as in Table 1) with a ’6×’
schedule, which is roughly 72 epochs. For the FPS of DETR, ∗ means we follow the method in the original paper [4] and re-measure it on
2080Ti.

Model Epochs FPS AP AP50 AP75 APS APM APL

YOLOv4 [1] 273 53∗ 43.5 65.7 47.3 26.7 47.6 53.3
YOLOF-DC5 184 60† 44.3 62.9 47.5 24.0 48.5 60.4

Table 3. Comparison with YOLOv4 on the COCO test-dev set.
We train YOLOF-DC5 with a ’15×’ schedule (184 epochs) and
compare it with YOLOv4. In the table, † means that the FPS
for YOLOF-DC5 is measured by following YOLOv4 [1]. It is
different from the method used in Table 1, 2 in this paper. In
YOLOv4 [1], the authors fuse the convolution layer and the batch
normalization layer, then measure the inference time after con-
verting the model to half-precision. ∗ represents that we get the
speed for YOLOv4 on 2080Ti from the official repo https:
//github.com/AlexeyAB/darknet#geforce-rtx-
2080-ti.

tion, we show results that training with multi-scale images
and a longer schedule in the last two rows of Table 1. Fi-
nally, with the help of multi-scale testing, we obtain our
final result of 47.1 mAP and a competitive performance of
31.8 mAP on small objects.

Comparison with DETR. DETR [4] is a recent proposed
detector which introduces transformer [39] to object detec-
tion. It achieves surprising results on the COCO bench-
mark [24] and proves that by only adopting a single C5 fea-
ture, it can achieve comparable results with a multi-level
feature detector (Faster R-CNN w/ FPN [22]) for the first
time. Given this, one might expect that layers capture global
dependencies such as transformer layers [39] are required to
achieve promising results in single-level feature detection.
However, we show that a conventional network with local
convolution layers can also achieve this goal. We com-
pare DETR with global layers and YOLOF with local con-
volution layers in Table 2. The results show that YOLOF
matches the DETR’s performance, and YOLOF gets more
benefits from deeper networks than DETR (w/ ResNet-50
(−0.4) vs. w/ ResNet-101 (+0.2)). Interestingly, we find
that YOLOF outperforms DETR on small objects (+1.9 and
+2.4) while lags behind DETR on large objects (-3.5 and
-2.9). The finding is consistent with the local and global
discussion above. More importantly, compared with DETR,
YOLOF converge much faster (∼ 7×), making it more suit-
able than DETR to serve as a simple baseline for single-
level detectors.

Dilated
Encoder

Uniform
Matching

AP ∆ APS APM APL

21.1 -16.6 8.6 31.1 34.5
X 29.1 -8.6 9.5 32.2 50.6

X 33.8 -3.9 17.7 40.9 43.8
X X 37.7 - 19.1 42.5 53.2

Table 4. Effect of Dilated Encoder and Uniform Matching with
ResNet-50. These two components improve the original single-
level detector by 16.6 mAP. Note that the result of 21.1 mAP in
the table is not a bug. It perform slightly worse than the detectors
with SiSo encoders in Figure 1 and Figure 3 due to the design
of the decoder in YOLOF - only two convolution layers in the
classification head.

Comparison with YOLOv4. YOLOv4 [1] is an optimal
speed and accuracy multi-level feature detector. It combines
many tricks to achieve state-of-the-art results. As our pur-
pose is to build a simple and fast baseline for single-level
detectors, investigation on the bag of freebie tricks is out-
side of the scope of this work. Thus, we do not expect a
rigidly aligned comparison on performance. To compare
our YOLOF with YOLOv4, we apply the data augmen-
tation methods as YOLOv4, adopt a three-phase training
pipeline, modify the training settings accordingly, and add
dilations on the last stage of the backbone (YOLOF-DC5
in Table 3). More technical details about the model and the
training settings are given in the Appendix. As shown in Ta-
ble 3, YOLOF-DC5 can run 13% faster than YOLOv4 with
a 0.8 mAP improvement on overall performance. YOLOF-
DC5 achieves less competitive results on small objects than
YOLOv4 (24.0 mAP vs. 26.7 mAP) while outperforms it
on large objects by a large margin (+7.1 mAP). The above
results indicate that single-level detectors have great poten-
tial to achieve state-of-the-art speed and accuracy simulta-
neously.

5.2. Ablation Experiments

We run a number of ablations to analyze YOLOF. We
first provide an overall analysis of the two proposed compo-
nents. Then, we show the ablation experiments on detailed
designs of each component. Results are shown in Table 4,5
and discussed in detail next.

7

https://github.com/AlexeyAB/darknet#geforce-rtx-2080-ti
https://github.com/AlexeyAB/darknet#geforce-rtx-2080-ti
https://github.com/AlexeyAB/darknet#geforce-rtx-2080-ti


N AP APs APm APl

0 33.8 17.7 40.9 43.8
2 34.9 17.8 41.3 46.8
4 35.5 17.6 41.4 48.4
6 36.0 17.7 41.9 49.5
8 36.6 18.5 42.0 50.7

10 36.9 18.3 42.4 50.4

(a) Number of ResBlocks (ResNet-50):
More residual blocks bring more gains.
N represent the number of ResBlocks.
To keep YOLOF simple and neat, we
add 4 blocks in the encoder by default.

Dilations AP APs APm APl

1,1,1,1 35.5 17.6 41.4 48.4
2,2,2,2 36.4 18.1 41.8 50.2
3,3,3,3 36.9 18.4 42.1 51.0
1,2,3,4 37.4 18.6 42.6 51.8
2,4,6,8 37.7 19.1 42.5 53.2

3,6,9,12 37.3 18.7 42.1 52.6

(b) Different dilations (ResNet-50-N4): ’N4’
means we add 4 ResBlocks in the encoder. Di-
lation in the residual block gives large gains on
large objects and slightly improve the perfor-
mance of small and medium objects.

Dilations & Shortcut AP APs APm APl
2,4,6,8
X 37.7 19.1 42.5 53.2

2,4,6,8
- 34.1 16.2 38.4 47.5

1,1,1,1
X 35.5 17.6 41.4 48.4

1,1,1,1
- 32.6 15.0 38.4 44.2

(c) Add shortcut or not (ResNet-50): YOLOF results with
shortcuts or not on various dilation settings. Shortcut brings
considerable gains on all object scales and becomes more
important when the dilations are adopted (+3.6 AP with di-
lations 2,4,6,8 vs. +2.9 AP when dilations are all ones).

topk AP AP50 AP75 APs APm APl

top1 35.9 55.6 38.4 17.5 40.3 50.2
top2 37.2 56.7 39.9 18.9 41.6 52.0
top3 37.5 57.1 40.2 18.6 41.9 52.5
top4 37.7 56.9 40.6 19.1 42.5 53.2
top5 37.5 56.7 40.3 18.1 42 53.2

(d) Number of positives (ResNet-50-N4): Number of positive
anchors in Uniform Matching. Increase the positive anchor for
each ground-truth box can improve the performance while it sat-
urates when too many positive anchors. We choose the top4 an-
chors in YOLOF which achieves best results.

Matching Methods AP AP50 AP75 APs APm APl

Max-IoU Matching [23] 29.1 45.9 29.6 9.5 32.2 50.6
ATSS(topk=9) [48] 34.6 54.3 37.1 17.7 40.6 46.9

ATSS(topk=15) [48]∗ 36.5 55.9 38.6 18.1 41.4 50.8
Hungarian Matching [4] 35.8 55.5 38.3 18.2 39.9 50.2

Uniform Matching 37.7 56.9 40.6 19.1 42.5 53.2

(e) Uniform matching vs. other matchings (ResNet-50-N4): Comparison with
other matching methods. Uniform Matching achieve balance in positive anchors
and get the best results among other matching methods, which is consistent with
the comparison in Figure 6. Note that ’*’ represents that we get the best result for
ATSS [48] when setting topk as 15. More details can be found in the Appendix.

Table 5. Ablations. We show ablation experiments for Dilation Encoder and Uniform Matching on COCO2017 val set with ResNet-50.

Dilated Encoder and Uniform Matching: Table 4 shows
that both Dilated Encoder and Uniform Matching are nec-
essary to YOLOF and bring considerable improvements.
Specifically, Dilated Encoder has a significant impact on
large objects (43.8 vs. 53.2) and slightly improves the re-
sults of small and medium objects. The results indicate that
the limited scale range is a severe problem in the C5 fea-
ture (Section 4.1). Our Dilated Encoder provides a simple
but effective solution to this problem. On the other side,
the performance of small and medium objects drops signifi-
cantly (∼ 10AP ) without uniform matching, while the large
objects’ performance is only lightly affected. The finding is
consistent with the imbalance problem on positive anchors
analyzed in Section 4.2. The positive anchors are domi-
nated by large objects, resulting in poor results on small
and medium objects. Finally, when we remove both Di-
lated Encoder and Uniform Matching, a single-level feature
detector’s performance drops back to ∼ 20 mAP like the
results in Figure 1 and Figure 3.

Number of ResBlock: YOLOF stacks residual blocks in
the SiSo encoder. The results in Table 5a shows that stack-
ing more blocks gives extensive improvements on large ob-
jects, which is due to the increment of the feature scale
range. Although we observe continuous improvements with
more blocks, we choose to add four residual blocks to keep
YOLOF simple and neat.

Different dilations: Following the analysis in Section 4.1,
to enable the C5 feature to cover large scales, we replace

the standard 3 × 3 convolution layer in the residual blocks
with its dilated counterpart. We show the results with dif-
ferent dilations in the residual blocks in Table 5b. Ap-
plying dilations to residual blocks bring improvements to
YOLOF, while the improvements are saturated when us-
ing too large dilations. We conjecture that the reason for
this phenomenon is that dilations of 2, 4, 6, 8 are enough to
match object scales in all images.

Add shortcut or not: Table 5c shows that shortcuts play
an essential role in Dilated Encoder. The performance of all
objects will drop significantly if we remove the shortcuts in
residual blocks. According to Section 4.1, shortcuts com-
bine different scale ranges. A largely and densely paved
scale range covered by the feature is the critical factor for
detecting all objects in a single-level feature manner.

Number of positives: A comparison among the number
of induced positive anchors by ground-truth boxes is con-
ducted in Table 5d. Intuitively, more positive anchors can
achieve better performance as the learning will be easier
when given more samples. Thus, in our uniform match-
ing manner, we empirically increase the number of positive
anchors induced by each ground-truth box. As shown in Ta-
ble 5d, the hyper-parameter k is very robust for the perfor-
mance when k is larger than 1, which may suggest that the
most important is the uniform matching manner in YOLOF.
We set top4 for our uniform matching as it is the best choice
according to the results.

8



Figure 7. Error analysis for DETR-R101 and YOLOF-R101. Ac-
cording to TIDE [2], the figure shows the six types of errors (Cls:
classification error; Loc: localization error; Both: both cls and loc
error; Dupe: duplicate predictions error; Bkg: background error;
Miss: missing error). The pie chart shows the relative contribution
of each error, while the bar plots show their absolute contribution.
FP and FN means false positive and false negative respectively.

Uniform matching vs. other matchings: We compare
the uniform matching with other matching strategies for
YOLOF and show results in Table 5e. The proposed uni-
form matching strategy can achieve the best results, com-
patible with the imbalance analysis in Figure 6. It worth
noting that the Hungarian matching strategy can be roughly
treated as Top1 matching (Table 5d) so that they get sim-
ilar performance. The difference between them is that an
anchor will only match one object in Hungarian matching
while the Top1 matching does not have this constraint, and
the experiments show that this is not important. The origi-
nal ATSS find that top9 anchors are the best choice, while
we find top15 anchors are much better in the single-level
feature detector. By using top15 anchors, ATSS achieves a
good result of 36.5 mAP while still lags behind our uniform
matching by a 1.2 mAP gap.

5.3. Error Analysis

We add error analysis for YOLOF in this section to pro-
vide insights for future research in single-level feature de-
tection. We adopt the recent proposed tool TIDE [2] to
compare YOLOF with DETR [4]. As illustrated in Fig-
ure 7, DETR has a larger error in localization than YOLOF,
which may be related to its regression mechanism. DETR
regresses objects in a total anchor free manner and predicts
the location globally in the image, which causes difficulties
in localization. In contrast, YOLOF relies on pre-defined
anchors, which is responsible for higher missing error than
DETR [4] in the predictions. According to the analysis in
Section 4.2, the anchors of YOLOF are sparsely and not
flexible enough in the inference stage. Intuitively, there are
situations that there are no high-quality anchors pre-defined
around a ground-truth box. Thus, introducing the anchor-

free mechanism into YOLOF may help alleviate this prob-
lem, and we leave it for future work.

6. Conclusion
In this work, we identify that the success of FPN is due

to its divide-and-conquer solution to the optimization prob-
lem in dense object detection. Given that FPN makes net-
work structure complex, brings memory burdens, and slows
down the detectors, we propose a simple but highly effi-
cient method without using FPN to address the optimiza-
tion problem differently, denoted as YOLOF. We prove its
efficacy by making fair comparisons with RetinaNet and
DETR. We hope our YOLOF can serve as a solid baseline
and provide insight for designing single-level feature detec-
tors in future research.

Appendix A: More Details
Detailed Structures of All Encoders: In Figure 8, we il-
lustrate the detailed processes of generating outputs in en-
coders. The four encoders differ in the number of input
features and output features. (a) The Multiple-in-Multiple-
out (MiMo) encoder receives three levels from the backbone
and output five levels. The structure of the MiMo encoder is
the same as FPN in RetinaNet [23]. (b) Single-in-Multiple-
out (SiMo) only has one C5 feature for the input. As there
are no other inputs, we remove the 1 × 1 convolution layer
designed for C3 and C4. (c) Multiple-in-Single-out (MiSo)
receives three input features while only generate one output
feature P5. To fully utilize the context in the input features,
we adopt a structure similar to PANet [25] in MiSo. (d)
In the Single-in-Single-out (SiSo) encoder, we remove all
other convolution layers and only keep the convolution lay-
ers in the level of C5.

Network Architecture of YOLOF In Figure 9, we show
a detailed network architecture of YOLOF. YOLOF detects
objects on single-level feature, which is very simple. Our
method consists of three components: the backbone, the en-
coder, and the decoder. The detailed design of these com-
ponents are presented in Section 4.3.

Training Time & Memory: In this section, we com-
pare training time and training memory among YOLOF,
DETR [4], and RetinaNet+ [23]. As shown in Table 6, due
to the long training schedule, DETR needs 112.5 hours to
converge on COCO with eight 2080Ti GPUs, while YOLOF
and RetinaNet+ only need 4.5 hours and 9.8 hours, respec-
tively. As for training memory, YOLOF needs less mem-
ory than RetinaNet+ and DETR, which make YOLOF be
trained with larger batch size and converge faster.

More Implementation Details: The default training set-
tings for YOLOF is a total of 64 images per mini-batch
(8 images per GPU) with an initial learning rate of 0.12.

9



C3

C4

C5

P3

P4

P5

P6

P7

1x1 3x3

1x1 3x3

1x1 3x3

3x3, s=2

3x3, s=2

up

up

(a) Multiple-in-Multiple-out

C3

C4

C5

P3

P4

P5

P6

P7

3x3

3x3

1x1 3x3

3x3, s=2

3x3, s=2

up

up

(b) Single-in-Multiple-out

C3

C4

C5

P3

P4

P5

P6

P7

1x1 3x3

(d) Single-in-Single-out

C3

C4

C5

P3

P4

P5

P6

P7

1x1 3x3

1x1 3x3

1x1 3x3

up

up

(c) Multiple-in-Single-out

dn

dn

Figure 8. Detailed Structures of Multiple-in-Multiple-out (MiMo), Single-in-Multiple-out (SiMo), Multiple-in-Single-out (MiSo), and
Single-in-Single-out (SiSo) encoders.

Dilated
EncoderCNN

Regression

Classification

Objectness

𝑁×𝐶!"#×𝐻×𝑊

C5/DC5
𝑁×512×𝐻×𝑊

𝑁×512×𝐻×𝑊

𝑁×512×𝐻×𝑊

𝑁×512×𝐻×𝑊

𝑁×512×𝐻×𝑊

×2

×4

𝑁×𝐾𝐴×𝐻×𝑊

𝑁×4𝐴×𝐻×𝑊

(a) Backbone (b) Encoder (c) Decoder

𝑁×𝐴×𝐻×𝑊

Figure 9. The sketch of YOLOF, which consists of three main components: the backbone, the encoder, and the decoder. In the figure,
’C5/DC5’ represents the output feature of the backbone with downsample rate of 32/16. ’Cout’ means the number of channels of the
feature. We set the number of channels as 512 for feature maps in the encoder and the decoder. H ×W is the height and width of feature
maps.

Model Memory/Images Training Time

YOLOF 5.3G / 8 4.5h
RetinaNet+ [23] 4.9G / 2 9.8h

DETR [4] 7.1G / 2 112.5h

Table 6. Comparison of training memory and training time among
different models. All models are trained with eight 2080Ti
GPUs with their default settings, i.e, we train YOLOF and
RetinaNet+ [23] in a ’1x’ schedule, while train DETR [4] with
150 epochs on COCO2017 training set.

While for ResNeXt-101 [43], we train with 4 images per
GPU (batch size 32) and set the learning rate to 0.06 follow-
ing the linear rule [12]. For multi-scale training, DETR [4]
apply random crop plus resize to simulate large image size
during training. In YOLOF, we simply resize the image to
large size. For multi-scale training, we follow HTC [5] and
adopt a strategy of random sample the image size between
[400, 1400] with its largest edge no greater than 1600 pixels.

Detailed Settings to Compare with YOLOv4 To match
the performance of YOLOv4, we first increase the num-
ber of dilated residual blocks in the dilated encoder from

4 to 8. We adjust the dilations of these dilated residual
blocks according to experimental results. We find that the
dilations [1, 2, 3, 4, 5, 6, 7, 8] give the best result. Then fol-
lowing YOLOv4 [1], we adopt its data augmentations, take
the CSPDarkNet-53 [40] as the backbone, replace all the
batch normalization layers with its synchronized counter-
part, and apply LeakyReLU [44] in the encoder and the
decoder instead of ReLU layers. According to the results
in Table 9, YOLOF-DC5 gives better results than YOLOF.
Thus we use YOLOF-DC5 as the baseline model in this sec-
tion. After that, we set an initial learning rate of 0.04 for
the whole model. To train the final model, we adopt a three-
phase training. At first, we training YOLOF-DC5 for a ’9×’
schedule; then we increase the ignore threshold for negative
anchors from 0.75 to 0.8 and train a ’3×’ schedule based
on the previous model (this phase gives a 0.5 mAP gain); at
last, we train another ’3×’ schedule by following the recipe
introduced in [47]. The final result shown in Table 3 is pro-
duced by the SWA model, which is obtained by averaging
12 checkpoints (the SWA model gives a∼ 1 mAP improve-
ment).

10



Model areas sizes ratios AP AP50 AP75 APs APm APl

YOLOF 5 1 1 37.7 56.9 40.6 19.1 42.5 53.2
YOLOF 5 1 3 37.7 57.2 40.7 19.4 42.0 52.2
YOLOF 5 3 1 35.0 52.3 37.9 15.0 40.6 52.9
YOLOF 5 3 3 35.4 52.4 38.3 14.8 41.2 52.5

Table 7. Results of YOLOF with different multiple anchors per
location on COCO [24] validation set.

Model & k 5 7 9 11 13 15 17 19
YOLOF (with ATSS) 33.7 33.8 34.6 35.8 35.5 36.5 36.3 36.2

Table 8. An illustration of how performance changes with the vari-
ation of the hyper-parameter k in ATSS [48].

Model FPS AP AP50 AP75 APS APM APL

YOLOF-DC5-R50 24 39.2 58.6 42.7 22.3 43.9 50.8
YOLOF-DC5-R101∗ 17 40.5 59.8 43.9 23.0 44.9 53.8

Table 9. Additional results of YOLOF-DC5 with different back-
bones on COCO val split. ∗means that due to the limited memory
of 2080Ti, we train with 4 images per GPU (batch size 32) for
ResNet-101. Higher performance can be achieved if train with 8
images per GPU or apply SyncBN (BN layers in the encoder and
decoder restrict the improvements).

Appendix B: Additional Experimental Results
Number of Anchors: In RetinaNet [23], anchors are gen-
erated from multiple level features (P3-P7) with areas of
322 to 5122, respectively. At each level feature, RetinaNet
paves anchors with sizes {20, 21/3, 22/3} and aspect ratios
{0.5, 1, 2}. While in YOLOF, we only have a one-level
feature to place anchors. To cover all objects’ scales, we
add anchors with areas of {322, 642, 1282, 2562, 5122}, size
{1}, and aspect ratio {1} in the single feature map, re-
sulting in 5 anchors in each position. Moreover, we in-
vestigate the influence of more anchors in YOLOF. Fol-
lowing RetinaNet, we generate 45 anchors in each position
with different sizes ({20, 21/3, 22/3}) and more aspect ra-
tios ({0.5, 1, 2}). All results are shown in Table 7. The
results show that adding more aspect ratios does not change
the performance of YOLOF, while the performance drops
with more sizes. Thus, we choose to add a minimum of five
anchors for YOLOF by default.

Hyper-parameter of ATSS: Here, we provide the results
of using different values of k in ATSS [48] in Table 8. The
results show that the choice of k = 9 used in the original
paper is not the best choice in YOLOF. According to the
results, we choose k = 15 for ATSS in this paper.

Results with Dilated C5: In this paper, we show that
YOLOF performs well on the C5 feature. To boost the
performance of YOLOF, we detect objects on a feature
map with higher resolution than the C5 feature. Follow-
ing DETR [4], we construct a backbone with dilation and
without stride on its last stage. The backbone’s output fea-
ture is denoted as DC5, with a downsample rate of 16. In

Table 9, we show the results of YOLOF-DC5 on COCO
val split with ResNet-50 and ResNet-101 as the backbone.
YOLOF-DC5 achieves higher performance than the orig-
inal YOLOF but runs at a slower speed as the feature’s
resolution is larger than C5. To achieve the results, we
first add a smaller anchor, resulting in 6 anchors per loca-
tion ({16, 32, 64, 128, 256, 512}), then we increase the topk
from 4 to 8 and change the ignore threshold for positive an-
chors from 0.15 to 0.1. Other parameters are the same as
before.

Acknowledgements
This work is supported by The National Key Re-

search and Development Program of China (No.
2017YFA0700800), Beijing Academy of Artificial
Intelligence (BAAI), National Natural Science Foun-
dation of China (No.61972396, 61876182, 61906193),
National Key Research and Development Program of
China (No. 2020AAA0103402), the Strategic Priority
Research Program of Chinese Academy of Sciences
(No. XDB32050200), and The NSFC-General Technol-
ogy Collaborative Fund for Basic Research (Grant No.
U1936204).

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 2,
7, 10

[2] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman.
Tide: A general toolbox for identifying object detection er-
rors. In ECCV, 2020. 9

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-
ing into high quality object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6154–6162, 2018. 1

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. arXiv preprint
arXiv:2005.12872, 2020. 2, 5, 6, 7, 8, 9, 10, 11

[5] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping
Shi, Wanli Ouyang, et al. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4974–4983,
2019. 6, 10

[6] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
Advances in neural information processing systems, pages
379–387, 2016. 2

[7] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6569–6578, 2019. 2

11



[8] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,
and Deva Ramanan. Object detection with discriminatively
trained part-based models. IEEE transactions on pattern
analysis and machine intelligence, 32(9):1627–1645, 2009.
2

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7036–7045, 2019. 1, 2

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 2

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 10

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 3, 4, 5, 6

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 4, 6

[16] Kang Kim and Hee Seok Lee. Probabilistic anchor assign-
ment with iou prediction for object detection. In ECCV,
2020. 5

[17] Tao Kong, Fuchun Sun, Chuanqi Tan, Huaping Liu, and
Wenbing Huang. Deep feature pyramid reconfiguration for
object detection. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 169–185, 2018. 1, 2

[18] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[19] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734–750, 2018. 2

[20] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang
Zhang. Scale-aware trident networks for object detection. In
Proceedings of the IEEE international conference on com-
puter vision, pages 6054–6063, 2019. 2, 4

[21] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong
Deng, and Jian Sun. Detnet: Design backbone for object
detection. In Proceedings of the European conference on
computer vision (ECCV), pages 334–350, 2018. 4

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 1, 2, 4, 7

[23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1, 2, 3, 4, 5, 6, 8, 9, 10, 11

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6, 7, 11

[25] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 1, 2, 9

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 2

[27] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 4

[28] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards bal-
anced learning for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 821–830, 2019. 1

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 2, 5

[30] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 2, 5

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 2

[32] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 658–666, 2019.
6

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 2

[34] Bharat Singh and Larry S Davis. An analysis of scale in-
variance in object detection snip. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3578–3587, 2018. 2

[35] Bharat Singh, Mahyar Najibi, and Larry S Davis. Sniper:
Efficient multi-scale training. In Advances in neural infor-
mation processing systems, pages 9310–9320, 2018. 2

[36] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng.
End-to-end people detection in crowded scenes. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2325–2333, 2016. 5

12



[37] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10781–10790, 2020. 1, 2

[38] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 9627–9636, 2019. 1, 2

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2,
7

[40] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu,
Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet:
A new backbone that can enhance learning capability of cnn.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 390–391,
2020. 10

[41] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 6

[42] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 3, 6

[43] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 5, 6, 10

[44] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
arXiv preprint arXiv:1505.00853, 2015. 10

[45] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 4

[46] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7151–7160, 2018. 6

[47] Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko
Sünderhauf. Swa object detection. arXiv preprint
arXiv:2012.12645, 2020. 2, 10

[48] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9759–9768, 2020. 2,
5, 8, 11

[49] Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji, and
Qixiang Ye. FreeAnchor: Learning to match anchors for
visual object detection. In Neural Information Processing
Systems, 2019. 5

[50] Zhenli Zhang, Xiangyu Zhang, Chao Peng, Xiangyang Xue,
and Jian Sun. Exfuse: Enhancing feature fusion for semantic
segmentation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 269–284, 2018. 2

[51] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 2

[52] Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong,
Songtao Liu, Zeming Li, and Jian Sun. Autoassign: Differ-
entiable label assignment for dense object detection. arXiv
preprint arXiv:2007.03496, 2020. 5

13

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

